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Abstract 
 
In this paper, we propose a super-resolution algorithm based on 
image fusion via pixel classification. Two high-resolution images 
are constructed, the first by means of motion compensation and 
the second by means of image interpolation. The AdaBoost classi-
fier is then used in the fusion of these images, resulting in an high-
resolution frame. Experimental results show that the proposed 
method outperforms well-known video resolution enhancement 
methods while maintaining moderate computational complexity. 
 
CR Categories: I.4.5 [Image Processing And Computer Vision]: 
Reconstruction; G.3 [Probability And Statistics]: Correlation and 
Regression Analysis 
 
Keywords: super-resolution, dynamic super-resolution, video 
resolution enhancement, pixel classification, AdaBoost 
 
1 Introduction 
 
In the last years high-definition television (HDTV) is becoming 
more and more popular. Vendors have developed the manufactur-
ing of displays complying recent HDTV standards. Various types 
of medium have been adapted to HDTV. However, there is still a 
lack of an high-definition video content. As most video content is 
still lower resolution, special algorithms are needed to convert it 
to higher resolution. Video resolution enhancement algorithms 
can be divided into two groups according to the type of informa-
tion used. 
 
The first group is composed of algorithms that use the information 
only from the current low-resolution (LR) video frame. All image 
interpolation methods can be considered belonging to this group, 
as video resolution enhancement can be performed by applying an 
image interpolation to each video frame. Methods from this group 
(such as bilinear and bicubic interpolation) are widely used due to 
their low computational complexity. The second group consists of 
the so-called super-resolution (SR) algorithms. In this case the 
information from neighboring frames is also used. Since video 
streams are highly redundant, such a processing leads to higher 
enlargement quality. At the same time, the analysis of neighboring 
frames together with the current frame significantly increases 
computational complexity of the algorithm. 
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In this paper, we propose a fast SR algorithm based on high-
resolution (HR) image fusion via pixel classification. Two HR 
images are constructed by means of motion compensation and 
image interpolation. Next, the AdaBoost [Friedman et al. 1998] 
classifier is used in the fusion of these images, resulting in an HR 
frame. The low computational complexity of the proposed method 
makes it suitable for fast video processing. Performance superior-
ity over standard video resolution enhancement methods is shown. 
 
The rest of the paper is organized as follows. In Section 2 a re-
view of the related work is given. In Section 3 the proposed SR 
algorithm is described. Experimental results are presented in Sec-
tion 4. In Section 5 we conclude our results and discuss possible 
directions of future research. 
 
2 Related Work 
 
Most contemporary SR algorithms are aimed at producing one HR 
frame from a set of LR frames. According to [Farsiu et al. 2006], 
we call them static SR algorithms. Various approaches have been 
taken recently in this field. Farsiu et al. [2006] considered an im-
age acquisition process as a sequence of operators, transforming a 
real world scene into a LR outcome. They treated SR as an energy 
minimization problem and used robust regularization based on 
bilateral total variation to construct an HR frame. It was assumed, 
that the camera point spread function (PSF) was known, and LR 
image sequence was obtained from spatially close points. Jiang et 
al. [2003] improved the classical iterative backward projection 
algorithm [Irani and Peleg 2001] by making it more robust to 
optical flow estimation errors and by modeling the PSF via an 
elliptical weighted area filter. Freeman et al. [2002] proposed an 
example-based image magnification method. They argued that the 
relationship between medium- and high-frequency image patches 
can be exploited to add high-frequency details to the enlarged 
image; a special large-size database was introduced to store such 
correspondences between patches. A similar technique combined 
with the reconstruction constraint was applied by Wang et al. 
[2005] for SR. The method, however, exhibits enormous compu-
tational complexity. Li [2006] proposed an SR algorithm for the 
special case where a set of LR frames acquired at different focal 
lengths is available. Static SR methods, if directly applied to each 
video sequence frame, can not ensure the temporal consistency of 
the enlarged video, which impedes their direct application to vid-
eo resolution enhancement. 
 
The problem of producing HR video from LR video (dynamic SR) 
has also been addressed. Bishop et al. [2003] extended the ap-
proach of Freeman et al. [2002]  to video resolution enhancement 
by introducing special priors maintaining the temporal consis-
tency of the enlarged video. As any example-based method, it is 
quite dependent on the training set. Moreover, patch search opera-
tions in the database are computationally expensive. Kong et al. 
[2006] proposed a method of video SR intended for cases where 
some HR photographs are available in addition to LR video, 



which forms a strong restriction on the application field of the 
method. Cheung et al. [2005] applied epitomic analysis (analysis 
of the probability distributions in 3D patches sampled from the 
video) to video resolution enhancement. This technique, however, 
is suitable only for processing video that contains scenes acquired 
at different focal lengths. Farsiu et al. [2006] used an approxima-
tion of the Kalman filter to bind the frame under enlargement with 
the previously processed frame. A translational motion model was 
assumed. 
 
Therefore, unacceptable computational complexity, utilization of 
simple motion models, and the necessity of a priori knowledge 
about camera characteristics make modern SR algorithms unsuit-
able for real-time or near-real-time resolution enhancement of 
video streams. 
 
3 Proposed Super-Resolution Algorithm 
 
3.1 Algorithm Outline 
 
We consider the case of two-times magnification of spatial resolu-
tion; the other cases can be processed similarly. It is also assumed 
that a pixel of LR frame is the mean of four corresponding pixels 
of this frame in high resolution. 
 
Our approach can be considered as an extension of that described 

in Farsiu et al. [2006]. An unknown HR frame nH  (the upper 
index represents the frame number) is modeled by an output frame 

nH~ , which is constructed in three steps: 

• Motion compensation. The current LR frame nL  is com-
pensated from the already constructed previous HR frame 

1~ −nH  to form an HR image M  (Section 3.2). 

• Spatial interpolation. nL  is spatially interpolated using the 
Lanczos interpolation filter with radius 4  (Lanczos4) to 
form an HR image U . 

• Fusion. The resultant frame nH~  is constructed via pixel-
wise fusion of two HR images, M  and U . Pixel fusion co-
efficients are calculated via the AdaBoost classifier (Section 
3.3).  

 
The flowchart of the proposed algorithm is presented in Figure 1. 

I. Motion compensation

M UIII.   Fusion

nH~

1−nH~

nL

II.  Spatial interpolation

 
Figure 1: Flowchart of the proposed algorithm. 

3.2 Motion Compensation 
 
Our motion estimation (ME) algorithm is based on the block 
matching algorithm described in Ahmad et al. [2006]. We made 
two major improvements to the original algorithm. The first is the 
adaptive block size. Such a technique allows capturing complex 
motion in a video sequence. In uniform areas and in the areas with 
low motion 1616×  blocks are used while in other cases (areas of 
fine texture and areas with intense motion) 88×  block partition 
is applied. A block is considered uniform, if the variance of its 
luminance does not exceed a certain threshold. The motion com-
plexity is determined by thresholding the variance of neighboring 
blocks’ motion vectors. Near the edges of moving objects the 
values of the variance are big, thus leading to smaller block size 
and more precise motion vector field. 
 
The second improvement affects the robustness of ME in uniform 
areas. The problem becomes especially crucial when using 88×  
block partition, as the robustness of the block matching ME de-
creases when using such a block size. Thus, some smoothness 
constraints are to be applied to motion vector field in uniform 
areas. In our case the frequencies of candidate motion vectors 
appearance in a candidate list are taken into account. Moreover, 
the range of pattern search refinement is adaptively reduced in 
such areas. 
 
Motion vectors are found with quarter-pixel accuracy. ME is per-
formed in luminance plane only. 
 
The architecture of SR ME differs from that of conventional ME, 
as the resolution of the current frame is two times smaller in each 
direction than the resolution of the reference frame. The same is 
true for the current block and its corresponding reference block. 
But under the assumption of dependency between LR pixel (pixel 
of LR frame) and corresponding   HR  pixels   (pixels   of    HR   
frame) the adaptation of motion compensation to SR is straight-
forward. The following metric function ρ  is used to compare an 
LR block B  with an HR reference block pointed by a motion 
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is the pixel of a reference block converted to low resolution using 
bilinear downsampling. Thus, the metric is an adaptation of the 
Sum of Absolute Differences (SAD) metric to the SR framework. 
 
After a motion vector is estimated for each block, the HR motion-
compensated frame M  is built from the HR reference blocks. 
 
 



3.3 Images Fusion via Classification 
 
After M and U  HR images are built, a per-pixel fusion process 
is performed to construct an output HR frame. Pixel-wise fusion 
allows the masking of motion compensation artifacts (such as 
blockiness), since the pixels of U  image will be used in the areas 
of bad compensation. We introduce a probabilistic framework for 

the fusion process, modeling an unknown HR pixel value n
jH  

(the lower index represents the pixel number) by a random variate 
n
jĤ  for which two possible cases are considered:  
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Here ( ) { }4
1== kk )i(jiP  is the preimage of an LR pixel i  (i.e., 

the set of numbers of four HR pixels corresponding to i , as illus-

trated in Figure 2). jM̂  and jÛ  are the pixels of M  and U , 

corrected according to the upscaling errors MΔ  and UΔ , which 
are defined as 
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Figure 2: Correspondence between LR and HR pixels. 

It is assumed that, for each LR pixel i , all four pixels from ( )iP  

are simultaneously taken either from M̂  or from Û . 
 
Thus, a classifier can be employed to estimate the class ic  for 

each LR pixel i , where 1=ic  if pixels from ( )iP  are taken 

from M̂ , and 1−=ic  otherwise. We apply the AdaBoost boost-
ing algorithm which iteratively constructs a strong classifier as a 
linear combination of weak classifiers. The main advantage of 
AdaBoost is that at each iteration the training is focused on hard 
training samples. Various weak learners can be used; in our case 
we employed Classification And Regression Tree (CART) of 
depth 5. 
 
The training set was constructed as follows: 30000 LR pixels were 
selected from various video sequences. For each LR pixel t  from 
the training set the class was determined in the least squares sense, 
i.e., the following sums of squared errors were calculated: 
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.ÛHSSE,M̂HSSE
tPj

j
n
j

Û
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The class that corresponds to the lower sum was chosen, thus 
forming a ground truth training sample. 
 
The feature vector X  consists of five features. The first two are 
the upscaling errors (4). The third is the luminance variance of 
neighboring LR pixels. It is useful to determine uniform areas 
where the Lanczos interpolation usually produces better results. 
The fourth is the sum of variances of the motion vector coordi-
nates, calculated for neighboring blocks. It helps to determine the 
areas of intense motion. The fifth feature is derived as follows: the 
difference between the sums of squared errors (5) is approximated 

by substituting n
iL  instead of n

jH  for each j  from ( )iP : 
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Four iterations of AdaBoost were performed to train a strong clas-
sifier with sufficient performance. A small number of weak learn-
ers in the committee ensured the low computational complexity of 
the classifier.  
 

From our experiments, better results can be achieved, if n
jH  is 

modeled by the expectation of n
jĤ , i.e., by  
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Here, ( )XcPp ii |1==  is the class conditional probability, 
which, according to Friedman et al. [1998], can be written as 
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where ( )XF  is the classifier output. Such an approach can be 

somewhat argued by the fact that in cases where ( )XF  is close 
to 0, it is difficult to determine the correct class. And in such cas-
es, (7) leads to the averaging of jM̂  and jÛ , which is slightly 

better than using one of them. Equation (8) can be presented in a 
more general form: 
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where 0>α  is the “aggressivity” parameter. Plots of ip  for 

{ }19,2=α  are presented in Figure 3.  
 
As can be seen, varying α  we tune the shape of dependence of 

ip  on ( )XF . Our experiments show that 19=α  provides sig-
nificantly higher quality compared to 2=α . Therefore, all ex-
perimental results presented later were obtained using 19=α . 
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Figure 3: Dependence of ip  on ( )XF . 

For the resolution enhancement of chrominance planes the fusion 
process (7) is applied with the same ip  values as are used for the 
luminance plane enlargement. 
 
4 Experimental Results 
 
Our test set consists of four HR video sequences in 7201280×  
resolution based on the material recorded by SVT Sveriges Tele-
vision AB and available for free at ftp://ftp.ldv.e-technik.tu-
muenchen.de/dist/test_sequences/720p/ FTP site. Notably, we 
used Mobcal, Parkrun (604 frames version), Stockholm, and 
Shields (604 frames version) videos. Since the frames  
{44, 89, 135, 227, 273, 320, 367} of Mobcal video expose  
artifacts, they were removed. Grey frames were removed from all 
these videos. 
 
LR video was derived from the test set applying bilinear down-
sampling by a factor of 21/ . For comparison, video resolution 
enhancement was performed by the proposed method, Lanczos4 
and bicubic interpolation. Next, the Y-PSNR metric was calcu-
lated for each of the compared methods using ground truth HR 
video as a reference. The results of the Y-PSNR comparison are 
presented in Table I.  

TABLE I 
Comparison of Y-PSNR (dB) for various methods 

Video Sequence 
Method 

Mobcal Parkrun Shields Stockholm 

Bicubic 29.05 23.18 32.13 30.73 

Lanczos4 29.84 23.82 33.14 31.57 

Proposed 33.35 25.17 35.42   32.66 

ΔY-PSNR metric was also calculated by subtracting algorithms’ 
Y-PSNR values from those of bicubic interpolation, used as a 
reference. Plots of the ΔY-PSNR metric are presented in Figure 4. 
Our method outperforms Lanczos4 and bicubic interpolation 
while maintaining an acceptable processing speed of 2 frames per 
second, achieved on a single-core Athlon64 3600+ computer us-
ing a non-optimized C implementation. Visual performance of the 
proposed SR algorithm is demonstrated in  
Figure 5 – Figure 7 together with the results of the Lanczos4 and 
bicubic interpolation filters. The images were taken from Mobcal 
video sequence. For clarity, the presented images are enlarged two 
times by a nearest neighbor filter. 
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Figure 4: Comparison of ΔY-PSNR (relative to bicubic)  

for various methods. 

As can be seen, the proposed SR algorithm provides a sharper and 
more detailed picture in comparison with other resolution en-
hancement methods. 
 
The proposed SR algorithm can be easily adapted for the process-
ing of video containing scene changes by employing any scene 
detection technique, so that the first frame after a scene change 
would be reconstructed using spatial interpolation only. However, 
even without such a detection the result of the fusion process after 
a scene change is slightly acceptable. We constructed a five-frame 
video sequence, which consists of a blank frame followed by the 
first frames of four videos from our test set, thus leading to four 
scene changes.  The PSNR loss in comparison with Lanczos4 was 
0.68 dB. While processing a real video, all the frames between 
scene changes will not be affected. 
 
5 Conclusion 
 
In this paper, we presented a new super-resolution method in-
tended for fast video resolution enhancement. Our method pro-
vided better quality than did frequently used single-frame en-
largement methods, as proven by both objective and subjective 
comparisons. 
 
The performance and the processing speed of our method can be 
further improved by using cascade classifiers and by employing 
edge-directed interpolation. Moreover, motion compensation can 
be applied to just highly textured areas, thus increasing the speed 
even further. The research in these directions is ongoing. 
 
The work was partially supported by the Russian Foundation for 
Basic Research, grant 07-01-00759-а. 
 
 
 
 
 
 

19=α
2=α

ip

( )XF



References 
 
Ahmad, I., Zheng, W.G., Luo, J.C., Liou, M. 2006. A Fast Adap-

tive Motion Estimation Algorithm. IEEE Transactions on Im-
age Processing, vol. 16, issue 3, pp. 420–438. 

Bishop C., Blake A., and Marthi B. 2003. Super-Resolution En-
hancement of Video. In C. M. Bishop and B. Frey (Eds.), Pro-
ceedings of the Ninth International Workshop on Artificial In-
telligence and Statistics. 

Cheung V., Frey B. J., and Jojic N. 2005. Video Epitomes. In 
Proceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition, vol. 1, pp. 42-49. 

Farsiu S., Elad M., and Milanfar P. 2006. A Practical Approach to 
Super-Resolution, Invited paper. In Proceedings of the SPIE 
Conference on Visual Communications and Image Processing, 
vol. 6077. 

Freeman W. T., Jones T. R., and Pasztor E. C.. 2002. Example-
Based Super-Resolution. In IEEE Computer Graphics and Ap-
plications, vol. 22(2), pp. 56–65. 

Friedman J. H., Hastie T., and Tibshirani R. 1998. Additive Logis-

tic Regression: a Statistical View of Boosting. Dept. of Statis-
tics, Stanford University Technical Report. 

Irani M., and Peleg S. 1991. Improving Resolution by Image Reg-
istration, Journal of Computer Vision, Graphics, and Image 
Processing, vol. 53(3), pp. 231–239. 

Jiang Z., Wong T.T., and Bao H. 2003. Practical Super-Resolution 
from Dynamic Video Sequences. In Proceedings of IEEE In-
ternational Conference on Computer Vision and Pattern Rec-
ognition, vol. 2, pp. 549-554. 

Kong D., Han M., Xu W., Tao H., and Gong Y.H. 2006. Video 
Super-Resolution with Scene-Specific Priors. In Proc. British 
Machine Vision Conference, pp. 549-558. 

Li X. 2006. Super-Resolution for Synthetic Zooming. EURASIP 
Journal on Applied Signal Processing, No. Article ID 58195, 
pp. 1-12. 

Wang Q., Tang X., and Shum H. 2005. Patch Based Blind Image 
Super Resolution. In Proceedings of IEEE Conference on 
Computer Vision, vol. 1, pp. 709-716. 

 
 

 
 

 

 
(a) 

 

  
(b) 

  
(c) 

 
(d) 

Figure 5: Visual quality comparison of Mobcal frame. (a) Ground truth; (b) Lanczos4 filter; (c) bicubic filter; (d) proposed SR. 
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Figure 6: Visual quality comparison of Mobcal frame. (a) Ground truth; (b) lanczos4 filter; (c) bicubic filter; (d) proposed SR. 
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Figure 7: Visual quality comparison of Mobcal frame. (a) Ground truth; (b) lanczos4 filter; (c) bicubic filter; (d) proposed SR. 

 


